InterviewSolution
Saved Bookmarks
| 1. |
If `sinA=sin^2Ba n d2cos^2A=3cos^2B`then the triangle `A B C`isright angled (b) obtuse angled(c)isosceles (d) equilateral |
|
Answer» `sinA = sin^2B ->(1)` `2cos^2A = 3cos^2B` `=>2cos^2A = 3(1-sin^2B)` From (1), `=>2(1-sin^2A) = 3(1-sinA)` `=>2sin^2A - 3sinA+1 = 0` `=>2sin^2A - 2sinA-sinA+1 = 0` `=>2sinA(sinA-1)-1(sinA-1) = 0` `=>(2sinA-1)(sinA-1) = 0` `=>sinA = 1 or sinA = 1/2` `=>A = 90^@ or A = 30^@` When `A = 90^@`, `sin^2B = 1 => B = 90^@`, which is not possible for a triangle. When `A = 30^@`, `sin^2B = 1/2 => B = 45^@` `=>C = (180-30-45)^@ = 75^@` `:. Delta ABC` is an obtuse angle triangle. So, option-`(b)` is the correct option. |
|