

InterviewSolution
Saved Bookmarks
1. |
If `sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y)`, then prove that `(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))` |
Answer» `therefore sqrt(1-x^2)+sqrt(1-y^2)=a (x-y)` `rArr sqrt(1-sin^2A)+sqrt(1-sin^2 )=B=a (sinA-sin B)` `rArr cosA +cos B = a(sin A-sin B)` `rArr 2cos""(A+B)/2.cos"" (A-B)/2=a 2 cos ""(A+B)/2 sin""(A-B)/2` `rArr cos""(A-B)/2=a.sin""(A-B)/2` `rArr cos""(A-B)/2=cot^-1a` `rArr (A-B)/2=cot^-1a` `rArr A-B = 2 cot^-1a` `rArr sin^-1x sin ^1y=2 cot ^-1 a` Differentiate both sides with respect to x `1/sqrt(1-x)-1/sqrt(1-y)dy/dx=0` `rArr dy/dx=(sqrt(1-y^2))/(sqrt(1-x^2))` |
|