1.

If \(\sqrt{11 - 3 \sqrt{8}} = a + b \sqrt{2}\), then what is the value of (2a + 3b)?1. 72. 93. 34. 5

Answer» Correct Answer - Option 3 : 3

Concept used:

(a – b)2 = a2 – 2ab + b2 

Calculations:

\(\sqrt{11 - 3 \sqrt{8}} = a + b \sqrt{2}\)

\(⇒ \sqrt{11 - 3 \sqrt{2 × 2 × 2}} = a + b \sqrt{2}\)

\(⇒ \sqrt{11 - 2 × 3 \sqrt{2}} = a + b \sqrt{2}\)

\(⇒ \sqrt{(3)^2 + (\sqrt2)^2 - 2 × 3 \sqrt{2}} = a + b \sqrt{2}\)

\(⇒ \sqrt{(3\;-\;√2)^2} = a + b \sqrt{2}\)

⇒ 3 – √2 = a + b√2

Compare a and b 

⇒ a = 3 

⇒ b = -1 

Value of (2a + 3b) = 2 × 3 + 3 × (-1) 

⇒ 6 – 3 = 3 

∴ Value of 2a + 3b is 3



Discussion

No Comment Found

Related InterviewSolutions