1.

If `t=(5^(x))/(x^(5))`, find `(dy)/(dx).`

Answer» Given : `y=(5^(x))/(x^(5))." …(i)"`
Taking logarithm on both sides of (i), we get
`logy=log(5^(x))-log(x^(5))`
`rArr log y = x log 5-5log x`
`rArr(1)/(y).(dy)/(dx)=(log5).1-(5)/(x)" [differentiating both sides w.r.t.x]"`
`rArr(dy)/(dx)=y(log5-(5)/(x))`
`rArr(dy)/(dx)=(5^(x))/(x^(5))(log5-(5)/(x)).`


Discussion

No Comment Found