

InterviewSolution
Saved Bookmarks
1. |
If `t=(x^(4)+cotx),` find `(d^(2)y)/(dx^(2))`. |
Answer» We have `y=(x^(4)+cotx)` `rArr (dy)/(dx)=4x^(3)-"cosec"^(2)x` `rArr (d^(2)y)/(dx^(2))=(d)/(dx)(4x^(3)-"cosec"^(2)x)` `=4.(d)/(dx)(x^(3))-(d)/(dx)("cosec"^(2)x)` `=(4xx3x^(2))-2"cosec x"(-"cosec x cot x")` `=(12x^(2)+2"cosec"^(2)xcot x).` |
|