1.

If `t=(x^(4)+cotx),` find `(d^(2)y)/(dx^(2))`.

Answer» We have
`y=(x^(4)+cotx)`
`rArr (dy)/(dx)=4x^(3)-"cosec"^(2)x`
`rArr (d^(2)y)/(dx^(2))=(d)/(dx)(4x^(3)-"cosec"^(2)x)`
`=4.(d)/(dx)(x^(3))-(d)/(dx)("cosec"^(2)x)`
`=(4xx3x^(2))-2"cosec x"(-"cosec x cot x")`
`=(12x^(2)+2"cosec"^(2)xcot x).`


Discussion

No Comment Found