 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If tanA=ntanB and sinA=msinB, prove that `cos^2A=[m^2-1]/[n^2-1]` | 
| Answer» `tanA = ntanB=> n = tanA/tanB` `sinA = msinB => m = sinA/sinB` `R.H.S. = (m^2-1)/(n^2-1) = (sin^2A/sin^2B-1)/(tan^2A/tan^2B-1)` `=((sin^2A-sin^2B)/sin^2B)/((tan^2A-tan^2B)/tan^2B)` `=((sin^2A-sin^2B)/sin^2B)/((tan^2A-tan^2B)/(sin^2B/cos^2B))` `=(sin^2A-sin^2B)/(cos^2B(tan^2A-tan^2B))` `=(1-cos^2A-(1-cos^2B))/(cos^2B(sec^2A-1-(sec^2B-1)))` `=(cos^2B-cos^2A)/(cos^2B(sec^2A-sec^2B))` `=(cos^2B-cos^2A)/(cos^2B(1/cos^2A-1/cos^2B)` `=(cos^2Acos^2B(cos^2B-cos^2A))/(cos^2B(cos^2B-cos^2A)` `=cos^2A = L.H.S.` | |