InterviewSolution
Saved Bookmarks
| 1. |
If `(tanx)/2=(tany)/3=(tanz)/5,x+y+z=pi` and `tan^2x+tan^2y+tan^2z=(38)/K` then K=_________` |
|
Answer» Aas `x+y+z = pi`, `:. tanx+tany+tanz = tanxtanytanz->(1)` Let `tanx/2 = tany/3 = tanz/5 = k` `=>tanx = 2k, tany = 3k, tanz = 5k` Putting these values in (1), `2k+3k+5k = 2k(3k)(5k)` `=>10k = 30k^3` `=>k^2 = 1/3` `=>k = 1/sqrt3` Here, we will not take `k = -1/sqrt3` as it will make `x+y+z` negative. Now, `tanx = 2/sqrt3 ,tany= 3/sqrt3, tanz = 5/sqrt3` Now, `tan^2x+tan^2y+tan^2z = 38/K` `=>4/3+9/3+25/3 = 38/K` `=>38/3 = 38/K` `=>K = 3` |
|