

InterviewSolution
Saved Bookmarks
1. |
If the determinant \(\begin{vmatrix} a & b & 2a\,\alpha+3b \\[0.3em] b& c &2b\,\alpha+3c \\[0.3em] 2a\,\alpha+3b & 2b\,\alpha+3c & 0 \end{vmatrix}\) , thenA. a, b, c are in H.P. B. α is a root of 4ax2 + 12bx + 9c = 0 or, a, b, c are in G.P. C. a, b, c are in G.P. only D. a, b, c are in A.P. |
Answer» B. α is a root of 4ax2 + 12bx + 9c = 0 or, a, b, c are in G.P. Expend the determinats : a[-(2bα+3c)2 ]-b[-(2bα+3c)(2aα+3b)]+ (2aα+3b)[b(2bα+3c)-c(2aα+3b)] = 0 -a(2bα+3c)2 + b(2bα+3c)(2aα+3b)+(2aα+3b)[2b2α+3bc-3bc-2acα] = 0 (2bα+3c) [-2abα-3ac+2abα+3b2]+ (2aα+3b)(2α)( b2 -ac) = 0 (2bα+3c) [-3ac +3b2 ]+ (2aα+3b)(2α)( b2 - ac) = 0 (b2 – ac)[4aα2 + 12bα + ac] = 0 CASE 1→ (b2 - ac) = 0 b2 = ac {abc are in Gp} CASE 2→ (4aα2 +12bα + ac)=0 {Whose one root is α} |
|