1.

If the determinant \(\begin{vmatrix} a & b & 2a\,\alpha+3b \\[0.3em] b& c &2b\,\alpha+3c \\[0.3em] 2a\,\alpha+3b & 2b\,\alpha+3c & 0 \end{vmatrix}\) , thenA. a, b, c are in H.P. B. α is a root of 4ax2 + 12bx + 9c = 0 or, a, b, c are in G.P. C. a, b, c are in G.P. only D. a, b, c are in A.P.

Answer»

B. α is a root of 4ax2 + 12bx + 9c = 0 or, a, b, c are in G.P.

Expend the determinats :

a[-(2bα+3c)2 ]-b[-(2bα+3c)(2aα+3b)]+ (2aα+3b)[b(2bα+3c)-c(2aα+3b)] = 0 

-a(2bα+3c)2 + b(2bα+3c)(2aα+3b)+(2aα+3b)[2b2α+3bc-3bc-2acα] = 0 

(2bα+3c) [-2abα-3ac+2abα+3b2]+ (2aα+3b)(2α)( b2 -ac) = 0 

(2bα+3c) [-3ac +3b2 ]+ (2aα+3b)(2α)( b- ac) = 0 

(b2 – ac)[4aα2 + 12bα + ac] = 0 

CASE 1→ 

(b2 - ac) = 0 

b2 = ac 

{abc are in Gp} 

CASE 2→

(4aα2 +12bα + ac)=0 

{Whose one root is α}



Discussion

No Comment Found