

InterviewSolution
Saved Bookmarks
1. |
If the function `f(x)=(3x^2ax+a+3)/(x^2+x-2)` is continuous at `x=-2,` then the value of `f(-2)` is |
Answer» Correct Answer - B Since the function is continuous at `x=-2`, then `f(-2)=underset(xrarr-2)(lim)f(x)` `" "=underset(xrarr-2)(lim)(3x^(2)+ax+a+3)/(x^(2)+x-2)` this limit will exist if `15-a=0` `rArr" "a=15" (i)"` So, `" "underset(xrarr-2)(lim)f(x)=underset(xrarr-2)(lim)(3x^(2)+15x+18)/(x^(2)+x-2)` `" "=underset(xrarr-2)(lim)(3(x+2)(x+3))/((x+2)(x-1))` `" "=underset(xrarr-2)(lim)(3(x+3))/((x-1))` `" "=(3)/(-3)=-1` Hence, `f(-2)=-1` |
|