

InterviewSolution
Saved Bookmarks
1. |
If the function `f(x) = {(kx + 5 ", when " x le 2),(x -1 ", when " x gt 2):}` is continuous at x = 2 then k = ? |
Answer» we have `f(2) = ( k xx 2 +5) = ( 2 k +5)` `lim_(x to 2x) f(x)= lim_(h to 0) f( 2 +h)` ` lim_( h to 0) {( 2 +h) -1} = lim_(h to 0) ( 1+h) =1` ` lim_(x to 2-) f(x) = lim_( h to 0) f ( 2-h) ` ` lim_(h to 0) {" k ( 2-h) +5} = lim_( h to 0) {( 2 k + 5) -kh } = ( 2k +5)` Now ` lim_(x to 2) f(x) " exists only when " 2k + 5 =1 ` i.e when k = -2 . when k = -2 we have ` lim_( x to 2) f (x) = f( 2) =1 ` Hence f (x) is continuous at x=2 when k =-2 |
|