1.

If the sum of three dimensions and the total surface area of a cuboidal box are 24 cm and 376 cm2 respectively, then the maximum length of a rod that can be put inside the box is?1). 7√3 cm2). 8√2 cm3). 5√2 cm4). 10√2 cm

Answer»

As we know, total surface area of cuboid = 2(lb + BH + hl)

And, maximum length of a ROD that can be put inside the BOX = √(L2 + b2 + h2)

Given, l + b + h = 24 cm and 2(lb + bh + hl) = 376 cm2

As we know, (l + b + h)2 = l2 + b2 + h2 + 2(lb + bh + hl)

⇒ 242 = l2 + b2 + h2 + 376

⇒ l2 + b2 + h2 = 576 – 376

⇒ l2 + b2 + h2 = 200

⇒ √(l2 + b2 + h2) = √200 = 10√2 cm

∴ The maximum length of a rod that can be put inside the box is 10√2 cm


Discussion

No Comment Found

Related InterviewSolutions