1.

If the tangents drawn from the point (-6, 9) to the parabola y2 = kx are perpendicular to each other, find k.

Answer»

Given equation of the parabola is y2 = kx 

Comparing this equation with y2 = 4ax, we get 

⇒ 4a = k 

⇒ a = k/4

Equation of tangent to the parabola y2 = 4ax having slope m is

y = mx + \(\frac {a}{m}\)

Since the tangent passes through the point (-6, 9), 

⇒ 9 = -6m + k/4m

⇒ 36m = -24m2 + k

⇒ 24m2 + 36m – k = 0 

The roots m1 and m2 of this quadratic equation are the slopes of the tangents. 

m1 m2 = -k/24

Since the tangents are perpendicular to each other

m1 m2 = -1 

⇒ -k/24 = -1

⇒ k = 24

Alternate method: 

We know that, tangents drawn from a point on directrix are perpendicular. 

(-6, 9) lies on the directrix x = -a. 

⇒ -6 = -a 

⇒ a = 6 

Since 4a = k 

⇒ k = 4(6) = 24



Discussion

No Comment Found