InterviewSolution
Saved Bookmarks
| 1. |
If ` veca. Vecb and vecc` are unit vectors satisfying ` |veca -vecb|^(2) +|vecb -vecc| ^(2) |vecc -veca| =9 , " then " |2 veca + 5 vecb + 5 vecc| ` is equal to |
|
Answer» Correct Answer - D we know that ` |veca + vecb + vecc|^(2) = |veca|^(2) +|vecb|^(2) +|vecc|^(2) + 2 ( veca .vecb + vecb.vecc + vecc.veca)` ` and |veca -vecb|^(2) + |vecb -vecc|^(2) +|vecc -veca|^(2) ` ` = 2 (|veca|^(2) +|vecb|^(2) +|vecc|^(2) ) -2 (veca.vecb + vecb.vecc + vecc.veca)` ` |veca -vecb|^(2) + |vecb - vecc|^(2) + |vecc -veca|^(2) ` ` = 3 { |veca|^(2) +|vecb|^(2) |vecc|^(2) } - |veca +vecb +vecc|^(2)` ` Rightarrow 9 = 3xx 3 - |veca + vecb + vecc|^(2) ` ` Rightarrow |veca + vecb + vecc|^(2) =0` ` Rightarrow veca + vecb + vecc = vec0` ` Rightarrow vecb + vecc =- veca` ` therefore | 2 veca + 5 vecb + 5vecc| = | 2 vecb +5( -veca)| = 3|veca|=3` |
|