1.

If ` veca, vecb` are unit vectors such that ` |veca +vecb|=1 and |veca -vecb|=sqrt3`, " then " |3veca +2vecb|=`A. 7B. 4C. ` sqrt7`D. `sqrt19`

Answer» Correct Answer - C
Let `theta` the angle between `veca and vecb` . Then,
` tan "" theta/2= (|veca -vecb|)/(|veca +vecb|) Rightarrow tan "" theta/2 = sqrt3 Rightarrow theta =120^(@)`
` veca.vecb = |veca||vecb| cos theta =cos 120^(@) = -1/2`
Now ,
` |3 veca = 2vecb|^(2) = 9 |veca|^(2) + 4 |vecb|^(2) + 12(veca .vecb)`
` Rightarrow |3veca + 2veca|^(2) = 9 +4+12 xx ( - 1/2) =7`
` Rightarrow |3veca +2vecb|= sqrt7`


Discussion

No Comment Found

Related InterviewSolutions