InterviewSolution
Saved Bookmarks
| 1. |
Unit vectors equally inclined to the vectors ` hati , 1/3 ( -2hati +hatj +2hatk) = +- 4/sqrt3 ( 4hatj +3hatk)` areA. `+- 1/sqrt51 (hati - 5hatj +5hatk)`B. ` +- 1/sqrt51 (hati -5hatj -5hatk)`C. `+- 1/sqrtt51 (hati+ 5hatj + 5hatk)`D. none of these |
|
Answer» Correct Answer - A Let the require unit be ` vecb = xhati + yhati + yhatj + zhatk` It is equally inclined to the given units vectors. Therefore, `(x hati +yhatj +zhatk) .hati = 1/3 ( - 2hati +hatj +2hatk) . (x hati +yhatj +zhatk)` ` -1/5 ( 4hatj +3hatk) . (xhati +yahtj +3hatk)` ` x = 1/3 ( -2x +y +2z) = -1/5 ( 4y +3z)` ` x= 1/3 ( -2 x + y +2z) = -1/5 ( 4y +3z)` ` Rightarrow 5x -y -2x =0 and 5x +4y +3z=0` ` Rightarrow x/1 = y/(-5) = z/5 lambda (say) , Rightarrow x=lambda, y =-5 lambda, z= 5lambda` It is given that ` vecr =xhati +yhatj +zhatk` is a unit vector. ` |vecr| =1 Rightarrow x^(2) +y^(2) +z^(2) =1 Rightarrow lambda = +- 1/sqrt51` ` vecr = +- 1/sqrt51 (hati -5hatj+5hatk)` |
|