1.

Unit vectors equally inclined to the vectors ` hati , 1/3 ( -2hati +hatj +2hatk) = +- 4/sqrt3 ( 4hatj +3hatk)` areA. `+- 1/sqrt51 (hati - 5hatj +5hatk)`B. ` +- 1/sqrt51 (hati -5hatj -5hatk)`C. `+- 1/sqrtt51 (hati+ 5hatj + 5hatk)`D. none of these

Answer» Correct Answer - A
Let the require unit be ` vecb = xhati + yhati + yhatj + zhatk`
It is equally inclined to the given units vectors. Therefore,
`(x hati +yhatj +zhatk) .hati = 1/3 ( - 2hati +hatj +2hatk) . (x hati +yhatj +zhatk)`
` -1/5 ( 4hatj +3hatk) . (xhati +yahtj +3hatk)`
` x = 1/3 ( -2x +y +2z) = -1/5 ( 4y +3z)`
` x= 1/3 ( -2 x + y +2z) = -1/5 ( 4y +3z)`
` Rightarrow 5x -y -2x =0 and 5x +4y +3z=0`
` Rightarrow x/1 = y/(-5) = z/5 lambda (say) , Rightarrow x=lambda, y =-5 lambda, z= 5lambda`
It is given that
` vecr =xhati +yhatj +zhatk` is a unit vector.
` |vecr| =1 Rightarrow x^(2) +y^(2) +z^(2) =1 Rightarrow lambda = +- 1/sqrt51`
` vecr = +- 1/sqrt51 (hati -5hatj+5hatk)`


Discussion

No Comment Found

Related InterviewSolutions