

InterviewSolution
Saved Bookmarks
1. |
If `x=e^(cos2t)`and `y=e^(sin2t)`, prove that `(dy)/(dx)=-(ylogx)/(xlogy)` |
Answer» `x=e^(cos2t)and y=e^(sin 2t)` ` cos 2t= log x and sin 2t = log y` `therefore" "cos^(2) 2t +sin^(2) 2t = (log x)^(2) + (log y)^(2)` `rArr" "(log x)^(2)+(log y)^(2)=1` Differentiating both sides w.r.t. x, we get `2log x(1)/(x)+2 log y (1)/(y)(dy)/(dx)=0` `rArr" "(dy)/(dx)=(-y log x)/(x log y)` |
|