1.

If `x=Sigma_(n=0)^(oo) cos^(2n) theta, y= Sigma_(n=0)^(oo) sin^(2n) phi` and `z= Sigma_(n=0)^(oo) cos^(2n) theta sin^(2n) phi`, where `0 lt theta lt phi lt pi/2` then prove that `xz+yz-z=xy`.

Answer» We have
`x=sum_(n=0)^(oo) cos^(2n)theta=1+cos^(2) theta+ cos^(4) theta+...oo`
`= a/((1-r))`, where `a=1` and `r= cos^(2) theta` [sum of an infinite GP]
`=1/((1- cos^(2) theta))=1/(sin^(2) theta)`.
`:. sin^(2) theta=1/x` ...(i)
`y= sum_(n=0)^(oo) sin^(2n) phi=1 + sin^(2) phi + sin^(4) phi +...oo`
`=a/((1-r))`, where `a=1` and `r= sin^(2) phi` [sum of an infinite GP]
`= 1/((1-sin^(2) phi))=1/(cos^(2) phi)`.
`:. cos^(2) phi =1/y` ...(ii)
`z= sum_(n=0)^(oo) cos^(2n) theta sin^(2n) phi =1+ cos^(2) theta sin^(2) phi +cos^(4) theta sin^(4) phi +...oo`
`=a/((1-r))`, where `a=1` and `r=cos^(2) theta sin^(2) phi`
`1/((1-cos^(2) theta sin^(2) phi))=1/(1-(1-sin^(2) theta)(1- cos^(2) phi))`
`=1/(1-(1-1/x)(1-1/y))=1/(1-(1-1/x-1/y+1/(xy)))` [using (i) and (ii)]
`=1/((1/x+1/y+1/(xy)))=(xy)/((x+y-1))`
`:. z=(xy)/(x+y-1) implies xz+yz-z=xy`.
Hence, `xz+yz-z=xy`.


Discussion

No Comment Found