InterviewSolution
Saved Bookmarks
| 1. |
If `x=(sin^3P)/cos^2P,y=cos^3P/sin^2P" and " sinP+cosP=1/2` then find the value of x + y. |
|
Answer» `x+y=(sin^5P+cos^5P)/(cos^2P sin^2P)` Now, `sin^5P+cos^5P=(sinP+cosP)(sin^4P-sin^3PcosP+sin^2Pcos^2P-sinPcos^3P+cos^4P)` `=(sinP+cosP)[(sin^4P+cos^4P)-sinPcosP(sin^2P+cos^2P)+sin^2Pcos^2P]` `=(sinP+cosP)[1-2sin^2Pcos^2P-sinPcosP+sin^2Pcos^2P]` `=(sinP+cosP)[1-sin^2Pcos^2P-sinPcosP]` Now, `sinP+cosP=1/2` `rArr1+2sinPcosP=1/4` `rArr sinPcosP=-3/8` Using these values, we get `x+y=(1/2[1-9/64+3/8])/(9/64)` `=79/18` |
|