1.

If `x^y+y^x=a^b` , then find `dy/dx`.

Answer» Let `u=x^(y) and v=y^(x)`.
Then, `u+v=a^(b)rArr(du)/(dx)+(dv)/(dx)=0." ...(i) "[becausea^(b)=" constant"]`
Now, `u=x^(y)rArrlogu=ylogx" [taking log on both sides]"`
`rArr(1)/(u).(du)/(dx)=y.(1)/(x)+logx.(dy)/(dx)" [on differentiaton]"`
`rArr(du)/(dx)=u[(y)/(x)+logx.(dy)/(dx)]`
`rArr(du)/(dx)=x^(y)[(y+xlogx.(dy)/(dx))/(x)]`
`rArr(du)/(dx)=x^(y-1)[y+xlogx.(dy)/(dx)].`
And, `v=y^(x)rArr log v=x logy" [taking log on both sides]"`
`rArr(1)/(v).(dv)/(dx)=x.(1)/(y).(dy)/(dx)+logy" [on differentiation]"`
`rArr(dv)/(dx)=v.[(x)/(y).(dy)/(dx)+logy]rArr(dv)/(dx)=y^(x){(x.(dy)/(dx)+ylogy)/(y)}`
`rArr(dv)/(dx)=y^((x-1)).{x.(dy)/(dx)+ylogy}.`
Using (i), we get `(du)/(dx)+(dv)/(dx)=0`
`rArrx^((y-1)){y+xlogx.(dy)/(dx)}+y^((x-1)).{x(dy)/(dx)+ylogy}=0`
`rArr{x^(y)(logx)+x.y^((x-1))}.(dy)/(dx)=-{y.x^((y-1))+y^(x)(logy)}.`
`therefore(dy)/(dx)=(-{y.x^((y-1))+y^(x)(logy)})/({x^(y)(logx)+xy^((x-1))}).`


Discussion

No Comment Found