InterviewSolution
| 1. |
If x4 + (1/x4) = 47 so find the value of x3 – (1/x3) 1. 5√52. 7√5 3. 8√54. 9√5 |
|
Answer» Correct Answer - Option 3 : 8√5 Given: x4 + (1/x4) = 47 Formula used: (x + y)2 = x2 + y2 + 2xy (x – y)2 = x2 + y2 – 2xy (x – y)3 = x3 – y3 – 3xy (x – y) Calculation: x4 + (1/x4) = 47 ⇒ [x2 + (1/x2)]2 = x4 + (1/x4) + 2 × x2 × (1/x2) ⇒ [x2 + (1/x2)]2 = 47 + 2 ⇒ [x2 + (1/x2)]2 = 49 ⇒ [x2 + (1/x2)] = 7 ⇒ [x – (1/x)]2 = x2 + (1/x)2 – 2× x × (1/x) ⇒ [x – (1/x)]2 = 7 – 2 ⇒ [x – (1/x)]2 = 5 ⇒ x – (1/x) =√5 ⇒ [x – (1/x)]3 = x3 – (1/x)3 – 3 × x × (1/x) (x – 1/x) ⇒ x3 – (1/x)3 = [ x – (1/x)]3 + 3 (x – 1/x) ⇒ x3 – (1/x)3 = (√5) 3 + 3 × √5 ⇒ x3 – (1/x)3 = 5√5 + 3√5 ⇒ x3 – (1/x)3 = 8√5 ∴The value of x3 – (1/x)3 is 8√5 Alternate method: x4 + (1/x4) = 47 = P x2 + (1/x2) = √(P + 2) ⇒ x2 + (1/x2) = √(47 + 2) ⇒ x2 + (1/x2) = 7 = Q ⇒ x – (1/x) = √(Q – 2) ⇒ x – (1/x) = √(7 – 2) ⇒ x – (1/x) = √5⇒ [x – (1/x)]3 = x3 – (1/x)3 – 3 × x × (1/x) (x – 1/x) ⇒ x3 – (1/x)3 = [ x – (1/x)]3 + 3 (x – 1/x) ⇒ x3 – (1/x)3 = (√5) 3 + 3 × √5 ⇒ x3 – (1/x)3 = 5√5 + 3√5 ⇒ x3 – (1/x)3 = 8√5 ∴ The value of x3 – (1/x)3 is 8√5 |
|