1.

If (x4 – 2x2y2 + y2)a –1 = (x – y)2a (x + y)–2, then the value of a is(a) x2 – y2 (b) log (xy) (c) \(\frac{log(x-y)}{log(x+y)}\)(d) log (x – y)

Answer»

(c) \(\frac{log(x-y)}{log(x+y)}\)

Given, (x4 – 2x2y2 + y2)a –1 = (x – y)2a (x + y)–2 

⇒ [(x2 – y2)2]a –1 = (x – y)2a (x + y)–2 

⇒ (x – y)2(a – 1) (x + y)2(a –1) = (x – y)2a (x + y)–2

⇒ \(\frac{(x-y)^{2(a-1)}}{(x-y)^{2a}}\) . \(\frac{(x+y)^{2(a-1)}}{(x+y)^{-2}}\) = 1 ⇒ (x-y)-2 (x+y)2a = 1

⇒ log [(x – y)–2 (x + y)2a] = log 1 ⇒ –2 log (x – y) + 2a log(x + y) = log 1

⇒ 2a log (x + y) = 2 log (x – y) ⇒ a = \(\frac{log(x-y)}{log(x+y)}\).                               [Since log 1 = 0]



Discussion

No Comment Found