

InterviewSolution
Saved Bookmarks
1. |
If `xsina+ysin2a+zsin3a=sin4a``xsinb+ysin2b+zsin3b=sin4b`,`xsinc+ysin2c+zsin3c=sin4c`,then the roots of the equation `t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi,`are(a)`sina ,sinb ,sinc`(b) `cosa ,cosb ,cosc`(b)`sin2a ,sin2b ,sin2c`(d) `cos2a ,cos2bcos2c` |
Answer» `xsina+ysin2a+2sin3a=sin4a` `xsina+y(2sinacosa)+2(3sina-4sin3a)=2sin2acos2a` `xsina+2ysinacosa+sina2(3-4sin^2a)=4sinacosacos2a` `a+2ycosa+2(3-4sin^2a)=4cosacos2a` `8cos^3a-4zcos^2a-(2y+4)cosa+(z-x)=0` `cos^3a-(z/2)cos^a-((y+2)/4)cosa+((z-x)/8)=0` `t=cosa` `t^3-(z/2)t^2-((y+z)/4)t+((z-x)/8)=0` Cosa is a root. cosb and cosc are roots. |
|