1.

If `xsina+ysin2a+zsin3a=sin4a``xsinb+ysin2b+zsin3b=sin4b`,`xsinc+ysin2c+zsin3c=sin4c`,then the roots of the equation `t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi,`are(a)`sina ,sinb ,sinc`(b) `cosa ,cosb ,cosc`(b)`sin2a ,sin2b ,sin2c`(d) `cos2a ,cos2bcos2c`

Answer» `xsina+ysin2a+2sin3a=sin4a`
`xsina+y(2sinacosa)+2(3sina-4sin3a)=2sin2acos2a`
`xsina+2ysinacosa+sina2(3-4sin^2a)=4sinacosacos2a`
`a+2ycosa+2(3-4sin^2a)=4cosacos2a`
`8cos^3a-4zcos^2a-(2y+4)cosa+(z-x)=0`
`cos^3a-(z/2)cos^a-((y+2)/4)cosa+((z-x)/8)=0`
`t=cosa`
`t^3-(z/2)t^2-((y+z)/4)t+((z-x)/8)=0`
Cosa is a root.
cosb and cosc are roots.


Discussion

No Comment Found