InterviewSolution
Saved Bookmarks
| 1. |
`"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).` |
|
Answer» `xsqrt(1+y)+ysqrt(1+x)=0` `impliesxsqrt(1+y)= -ysqrt(1+x)` `impliesx^(2)(1+y)=y^(2)(1+x)` `impliesx^(2)+x^(2)y=y^(2)+xy^(2)` `impliesx^(2)-y^(2)+x^(2)y-xy^(2)=0` `implies(x-y)(x+y)+xy(x-y)=0` `implies(x-y)(x+y+xy)=0` `impliesx+y+xy=0` `impliesy(1+x)= -x` `impliesy=(-x)/(1+x)` Differentiate both sides w.r.t. x `(dy)/(dx)=((1+x)(d)/(dx)(-x)-(-x)(d)/(dx)(1+x))/((1+x)^(2))` `=((1+x)(-1)+x(1))/((1+x)^(2))=(-1)/((1+x)^(2)) " " ` Hence proved. |
|