

InterviewSolution
Saved Bookmarks
1. |
If `y=3 e^(2x)+2 e^(3x)`, prove that `(d^2y)/(dx^2)-5(dy)/(dx)+6y=0`. |
Answer» We have `y=3e^(2x)+2e^(3x)" …(i)"` `rArr(dy)/(dx)=3.(d)/(dx)(e^(2x))+2.(d)/(dx)(e^(3x))" [on differentiating (i) w.r.t. x]"` `=(3xx2e^(2x))+(2xx3e^(3x))=(6x^(2x)+6e^(3x))` `rArr (dy)/(dx)=6(e^(2x)+e^(3x))." ...(ii)"` On differentiating (ii) w.r.t. x, we get `(d^(2)y)/(dx^(2))=6.{(d)/(dx)(e^(2x))+(d)/(dx)(e^(3x))}` `=6.(2e^(2x)+3e^(3x)).` `therefore((d^(2)y)/(dx^(2))-5(dy)/(dx)+6y)` `=6(2e^(2x)+3e^(3x))-30(e^(2x)+e^(3x))+(18e^(2x)+12e^(2x))` `=(12-30+18)e^(2x)+(18-30+12)e^(3x)=0.` Hence, `((d^(2)y)/(dx^(2))-5(dy)/(dx)+6y)=0.` |
|