

InterviewSolution
Saved Bookmarks
1. |
If `y=btan^(-1)(x/a+tan^(-1)y/x),fin d(dy)/(dx)dot` |
Answer» Correct Answer - `((1)/(a)-(y)/(x^(2)+y^(2)))/((1)/(b)sec^(2)((y)/(b))-(x)/(x^(2)+y^(2)))` We have `y=b tan^(-1)((x)/(a)+tan^(-1)""(y)/(x))` `"or "tan""(y)/(b)=(x)/(a)+tan^(-1)""(y)/(x)` Differentiating both sides w.r.t. x, we get `(1)/(b)sec^(2)((y)/(b))(dy)/(dx)=(1)/(a)+(1)/(1+((y)/(x))^(2))xx(x(dy)/(dx)-y)/(x^(2))` `"or "(1)/(b)sec^(2)((y)/(b))(dy)/(dx)=(1)/(a)+(x(dy)/(dx)-y)/(x^(2)+y^(2))` `"or "(dy)/(dx){(1)/(b)sec^(2)((y)/(b))-(x)/(x^(2)+y^(2))}=(1)/(a)-(y)/(x^(2)+y^(2))` `"or "(dy)/(dx)=((1)/(a)-(y)/(x^(2)+y^(2)))/((1)/(b)sec^(2)((y)/(b))-(x)/(x^(2)+y^(2)))` |
|