1.

If `y=cot^(-1)sqrt((1-sinx)/(1+sinx)),` find `(dy)/(dx).`

Answer» We have
`y=cot^(-1)sqrt((1-sinx)/(1+sinx))="cot"^(-1)sqrt(1+cos((pi)/(2)+x)/(1-cos((pi)/(2)+x)))`
`="cot"^(-1)sqrt((2cos^(2)((pi)/(4)+(x)/(2)))/(2sin^(2)((pi)/(4)+(x)/(2))))=cot^(-1){cot((pi)/(4)+(x)/(2))}=((pi)/(4)+(x)/(2)).`
`therefore(dy)/(dx)=(d)/(dx)((pi)/(4)+(x)/(2))=(d)/(dx)((pi)/(4))+(d)/(dx)((x)/(2))=(0+(1)/(2))=(1)/(2).`


Discussion

No Comment Found