1.

If `y=logsqrt((1+sin^(2)x)/(1-sinx))`, find `(dy)/(dx)`.

Answer» We have
`y=(1)/(2){log(1+sin^(2)x)-log(1-sinx)}." ...(i)"`
On differentiating (i) w.r.t. x, we get
`(dy)/(dx)=(1)/(2).[(d)/(dx){log(1+sin^(2)x)}-(d)/(dx){log(1-sinx)}]`
`=(1)/(2).{(2sinx cos x)/(1+sin^(2)x)-((-cos x))/((1-sinx))}`
`=(1)/(2).{(sin2x)/((1+sin^(2)x))+(cosx)/((1-sinx))}`.


Discussion

No Comment Found