

InterviewSolution
Saved Bookmarks
1. |
If `y=logsqrt((1+sin^(2)x)/(1-sinx))`, find `(dy)/(dx)`. |
Answer» We have `y=(1)/(2){log(1+sin^(2)x)-log(1-sinx)}." ...(i)"` On differentiating (i) w.r.t. x, we get `(dy)/(dx)=(1)/(2).[(d)/(dx){log(1+sin^(2)x)}-(d)/(dx){log(1-sinx)}]` `=(1)/(2).{(2sinx cos x)/(1+sin^(2)x)-((-cos x))/((1-sinx))}` `=(1)/(2).{(sin2x)/((1+sin^(2)x))+(cosx)/((1-sinx))}`. |
|