1.

If `y=sin(logx)`, prove that `x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0`.

Answer» We have
`y=sin(logx)`
`rArr(dy)/(dx)=(d)/(dx){sin(logx)}=cos(logx).(1)/(x)=(cos(logx))/(x)`
`rArr(d^(2)y)/(dx^(2))=(d)/(dx){(cos(logx))/(x)}`
`=(x.(d)/(dx){cos(logx)}-cos(logx).(d)/(dx)(x))/(x^(2))`
`=(x{-sin(logx).(1)/(x)}-cos(logx).1)/(x^(2))`
`=(-{sin(logx)+cos(logx)})/(x^(2)).`


Discussion

No Comment Found