

InterviewSolution
Saved Bookmarks
1. |
If `y=sqrt((1-cos2x)/(1+cos2x),)x in (0,pi/2)uu(pi/2,pi),`then find `(dy)/(dx)dot` |
Answer» We have `y=sqrt((1-cso2x)/(1+cos2x)),=sqrt((2sin^(2)x)/(2cos^(2)x))=sqrt(tan^(2)x)` `=|tanx|," where "x in(0,(pi)/(2))cup((pi)/(2),pi)` `={{:(tan x, x in(0,(pi)/(2)),),(-tan x, x in((pi)/(2),pi),):}` `therefore" "(dy)/(dx)={{:(sec^(2)x",", x in(0,(pi)/(2)),),(-sec^(2) x",", x in((pi)/(2),pi),):}` |
|