1.

If `y=(sqrtx(x+4)^(3//2))/((4x-3)^(4//3)),` find `(dy)/(dx).`

Answer» Given: `y=(sqrtx(x+4)^(3//2))/((4x-3)^(4//3))." ...(i)"`
Taking logarithm on both sides of (i), we get
`log y = (1)/(2)log x+(3)/(2)log (x+4)-(4)/(3)log(4x-4).`
On differentiating both sides w.r.t. x, we get
`(1)/(y).(dy)/(dx)=(1)/(2).(1)/(x)+(3)/(2).(1)/((x+4))-(4)/(3).(4)/((4x-3))`
`rArr(dy)/(dx)=y[(1)/(2x)+(3)/(2(x+4))-(16)/(3(4x-3))]`
`=(sqrtx(x+4)^(3//2))/((4x-3)^(4//3)).[(1)/(2x)+(3)/(2(x+4))-(16)/(3(4x-3))].`


Discussion

No Comment Found