1.

If `y=x^x^x^^((((oo))))`, find `(dy)/(dx)dot`

Answer» `y=x^(y)`
`"or "log y = y log x`
`"or "(1)/(y)(dy)/(dx)=(dy)/(dx)xxlog x+y(1)/(x)" "[Diff. both sides w.r.t.x]`
`"or "(dy)/(dx)({1-y log x })/(y)=(y)/(x)`
`"or "(dy)/(dx)=(y^(2))/(x(1-y log x))`


Discussion

No Comment Found