1.

If `y = x^(x ^(x^(x ^(x.... oo)` then prove that ` x dy/dx = y^2/(1- y logx )`

Answer» We know that an infinite series is not affected by the exclusion of a single term.
So, we may write the given function as `y=x^(y).`
Now, `y=x^(y)rArr logy=y log x`.
On differentiating both sides of (i) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=y.(1)/(x)+logx.(dy)/(dx)`
`rArr((1)/(y)-logx)(dy)/(dx)=(y)/(x)`
`rArr((1-ylogx))/(y).(dy)/(dx)=(y)/(x)`
`(dy)/(dx)={(y)/(x)xx(y)/((1-y logx))}rArr (dy)/(dx)=(y^(2))/(x(1-ylogx)).`


Discussion

No Comment Found