1.

If `y^x+x^y+x^x=a^b`, find `(dy)/(dx)`.

Answer» Let `u=x^(x),v=x^(y) and w=y^(x)`. Then,
`y+v+w=a^(b)`
`rArr(du)/(dx)+(dv)/(dx)+(dw)/(dx)=0." …(i) "[because a^(b)=" constant"]`
Now, `u=x^(x)`
`rArr logu=xlog x`
`rArr(1)/(u).(du)/(dx)=x.(d)/(dx)(logx)+logx.(d)/(dx)(x)`
`" [on differentiating both sides w.r.t. x]"`
`rArr(du)/(dx)=u.{x.(1)/(x)+(logx).1}`
`rArr(du)/(dx)=x^(x)(1+logx)." ...(ii)"`
And, `v=x^(y)`
`rArr log v=ylogx`
`rArr(1)/(v).(dv)/(dx)=y.(d)/(dx)(logx)+(logx).(d)/(dx)(y)`
`" [on differentiating both sides w.r.t. x]"`
`rArr(dv)/(dx)=v.[y.(1)/(x)+(logx).(dy)/(dx)]`
`rArr(dv)/(dx)=x^(y){(y)/(x)+(logx)(dy)/(dx)}." ...(iii)"`
And, `w=y^(x)`
`rArr logw=xlogy`
`rArr(1)/(w).(dw)/(dx)=x.(d)/(dx)(logy)+(logy).(d)/(dx)(x)`
`" [on differentiating both sides w.r.t. x]"`
`rArr(dw)/(dx)=w.{x.(1)/(y).(dy)/(dx)+(logy).1}.`
`rArr(dw)/(dx)=y^(x){(x)/(y).(dy)/(dx)+(logy)}." ...(iv)"`
Using (ii), (iii) and (iv) in (i), we get
`x^(x)(1+logx)+x^(y){(y)/(x)+(logx)(dy)/(dx)}+y^(x).{(x)/(y).(dy)/(dx)+(logy)}=0`
`rArr{x^(x)(1+logx)+y.x^((y-1))+y^(x)(logy)}+{x^(y)(logx)+xy^((x-1))}(dy)/(dx)=0`
`rArr(dy)/(dx)=(-{x^(x)(1+logx)+y.x^((y-1))+y^(x)(logy)})/({x^(y)(logx)+xy^((x-1))}).`


Discussion

No Comment Found