InterviewSolution
Saved Bookmarks
| 1. |
`Ifint_0^1cot^(-1)(1-x+x^2)dx=lambdaint_0^1tan^(-1)x dx ,t h e nlambdai se q u a lto`1 (b)2 (c) 3(d) 4A. `pi- log2`B. `pi+log2`C. `pi/2 +log2`D. `pi/2 - log2` |
|
Answer» Correct Answer - D Let `l=int_(0)^(1)cot^(-1)(1+x+x^(2))dx` `=int_(0)^(1)tan^(-1)((1)/(x^(2)-x+1))dx` `=int_(0)^(1)tan^(-1)((x-(x-1))/(1+x(x-1)))dx` `=int_(0)^(1)tan^(-1)xdx-int_(0)^(1)tan^(-1)(x-1)dx` `=int_(0)^(1)tan^(-1)xdx-int_(0)^(1)tan^(-1)(1-x-1)dx` `=2int_(0)^(1)tan^(-1)xdx` `=2[x tan^(-1)x-int(x)/(1+x^(2))dx]_(0)^(1)` `=2[x tan^(-1)x-(1)/(2)log(1+x^(2))]_(0)^(1)` `=2[(1tan^(-1)1-(1)/(2)log2)-(0-(1)/(2)log1)]` `=(pi)/(2)-log2` |
|