InterviewSolution
Saved Bookmarks
| 1. |
(iii) If `a, b c` are respectively the `pth, qth` and `rth` terms of the given `G.P.` then show that `(q-r) log a + (r-p) log b + (p-q)log c = 0`, where `a, b, c > 0. ` |
|
Answer» Let A be the first term and R be the common ratio of the given GP. Then, `a=AR^((p-1)) rArr log a = log A+(p-1) log R` ...(i) `b=AR^((q-1)) rArr log b = log A+(q-1) log R` ...(ii) `c=AR^((r-1)) rArr log c= log A+(r-1) log R`. ...(iii) `:. (q-r) log a+(r-p) log b+(p-q) log c` `=(q-r) log [AR^((p-1))]+(r-p) log [AR^((q-1))]+(p-q) log [AR^((r-1))]` `=(log A) {(q-r)+(r-p)+(p-q)}+(log R){(p-1)(q-r)+(q-1) (r-p)+(r-1)(p-q)}` `=(log A)xx0+(log R)xx0=0`. |
|