InterviewSolution
Saved Bookmarks
| 1. |
In ` A B C ,a , ca n dA`are given and `b_1,b_2`are two values of the third side `b`such that `b_2=2b_1dot`Then prove that `sinA=sqrt((9a^2-c^2)/(8c^2))` |
|
Answer» `cosA=(b^2+c^2-a^2)/(2bc)` `b^2-2bc*cosA+(c^2-a^2)=0` `b_1+b_2=2cosA` `b_1b_2=c^2-a^2` `3b_1=2cosa,2b_1^2=c^2-a_2` `2(2/3c cosA)^2=c^2-a^2` `8c^2(1-sin^2A)=9c^2-9a^2` `sinA=sqrt((9a^2-c^2)/(8c^2))`. |
|