1.

`int_0^a(dx)/(sqrt(a x-x^2))`

Answer» `(i) int_(0)^(a)(dx)/(sqrt(ax-x^(2)))=int_(0)^(a)(dx)/(sqrt(-(x^(2)-ax+(a^(2))/(4))+(a^(2))/(4)))`
`=int_(0)^(a)(dx)/(sqrt(((a)/(2))^(2)-(x-(a)/(2))^(2)))`
`=[sin^(-1).((x-(a)/(2)))/(((a)/(2)))]_(0)^(a)=[sin^(-1)((2x-a)/(a))]_(0)^(a)`
`=[sin^(-1)(1)-sin^(-1)(-1)]`
`=2sin^(-1)(1)=(2xx(pi)/(2))=pi`.
`(ii) int_(0)^(sqrt(2))sqrt(2-x^(2))dx=int_(0)^(sqrt(2))sqrt((sqrt(2))^(2)-x^(2))dx`
`=[(x)/(2)sqrt(2-x^(2))+((sqrt(2))^(2))/(2)*sin^(-1).(x)/(sqrt(2))]_(0)^(sqrt(2))`
`=[0+sin^(-1)(1)]-[0+sin^(-1)0]=(pi)/(2)`.


Discussion

No Comment Found