1.

`int_(0)^(pi//2)(1)/((1+tanx))dx=?`A. `pi`B. `pi//2`C. `pi//3`D. `pi//4`

Answer» Correct Answer - D
Given, `l = int_(0)^(pi//2)(dx)/(1+tan x)`
`l = int_(0)^(pi//2) (cos x)/(sin x + cos x)` ….(i)
`l = int_(0)^(pi//2)(cos((pi)/(2)-x))/(sin((pi)/(2)-x)+cos((pi)/(2)-x))dx`
`= int_(0)^(pi//2)(sin x)/(cos x+ sin x)dx` ….(ii)
On adding Eqs. (i) and (ii), we get
`2 l = int_(0)^(pi//2)((sin x + cos x)/(sin x + cos x))dx`
`= int_(0)^(pi//2)dx = (pi)/(2)rarr l = (pi)/(4)`


Discussion

No Comment Found