1.

`int_0^pixsin^3x dx`

Answer» Let `I=int_(0)^(pi) x sin^(3)xdx`…….`(i)`
Then, `I=int_(0)^(pi)(pi-x)sin^(3)(pi-x)dx`
or `I=int_(0)^(pi)(pi-x)sin^(3)xdx`……..`(ii)`
Adding `(i)` and `(ii)` , we get
`2I=int_(0)^(pi)pisin^(3)xdx=piint_(0)^(pi)sin^(2)x*sinxdx`
`=pi int_(0)^(pi)(1-cos^(2)x)sinxdx`
`=-pi int_(1)^(-1)(1-t^(2))dt`, where `cosx=t`
[`x=0impliest=1` and `x=piimpliest=-1`]
`=piint_(-1)^(1)(1-t^(2))dt=pi[t-(t^(3))/(3)]_(-1)^(1)=(4pi)/(3)`.
Hence, `I=(2pi)/(3)impliesint_(0)^(pi)xsin^(3)xdx=(4pi)/(3)`.


Discussion

No Comment Found