1.

`int_(-2)^1|2x+1|` dxA. `(5)/(2)`B. `(7)/(2)`C. `(9)/(2)`D. `4`

Answer» Put `2x+1=t` and `dx=(1)/(2)dt`.
`[x=-2impliest=-3]` and `[x=1impliest=3]`
`:.I=(1)/(2)int_(-3)^(3)|t|dt=(1)/(2){int_(-3)^(0)(-t)dt+int_(0)^(3)t dt}`
`=(1)/(2){[(-t^(2))/(2)]_(-3)^(0)+[(t^(2))/(2)]_(0)^(3)}=(1)/(2)[{0-((-9)/(2))}+((9)/(2)-0)]=(9)/(2)`.


Discussion

No Comment Found