1.

` int_(-2)^(3)| x^(2)-1|dx` is equal toA. 3B. `1/3`C. `17/3`D. `28/3`

Answer» Correct Answer - D
`l = int _(-2)^(3) | x^(2) -1| dx `
` :. int _(0)^(2) | x^(2) -1| dx + int _(-1)^(1) | x^(2) -1| dx + int_(1)^(3) (x^(2)-1) dx `
[ Here , modulus function will change at the points , when `x^(2) - 1 = 0 " i.e ., at " x = pm 1] `
So , `l = int _(-2)^(-1) (x^(2) -1) dx + int _(-1)^(1)(1-x^(2)) dx + int _(1)^(3) (x^(2)-1)dx`
` = [ (x^(3))/3 -x] _(2)^(-1) + [ x- (x^(3))/3]_(-1)^(1) + [ (x^(3))/3 - x] _(1)^(3)`
` = (2/3 +2/3) + (2/3 +2/3) + (6+2/3)=28/3`


Discussion

No Comment Found