1.

`int_(-a)^asqrt((a-x)/(a+x))dx`

Answer» Put `x=acostheta ` so that `dx=-asin theta d theta`.
Also, `(x=-aimpliestheta=pi)` and `(x=aimpliestheta=0)`.
`:.int_(-a)^(a)sqrt((a-x)/(a+x))dx=int_(pi)^(0)sqrt((1-costheta)/(1+costheta))*(-asintheta)d theta`
`=aint_(0)^(pi)sqrt((2sin^(2)(theta//2))/(2cos^(2)(theta//2)))*2sin(theta//2)cos(theta//2)d theta`
`=a int_(0)^(pi)2sin^(2)(theta//2)d theta=a int_(0)^(pi)(1-costheta)d theta`
`=a int_(0)^(pi)d theta-a int_(0)^(pi)cos theta d theta`
`=a*[theta]_(0)^(pi)-a[sintheta]_(0)^(pi)=api`.


Discussion

No Comment Found