1.

`int1/(3x^2+13x-10)dx`

Answer» We have `(3x^(2)+13x-10)=3(x^(2)+(13)/(3)x-(10)/(3))`
`=3{(x+(13)/(6))^(2)-(169)/(36)-(10)/(3)}=3{(x+(13)/(6))^(2)-(289)/(36)}`
`=3{(x+(13)/(6))^(2)-((17)/(6))^(2)}`.
`thereforeint(dx)/((3x^(2)+13x-10))=int(dx)/(3{(x+(13)/(6))^(2)-((17)/(6))^(2)})`
`=(1)/(3)int(dt)/({t^(2)-((17)/(6))^(2)}) , "where" (x+(13)/(6))=t`
`=(1)/(3)*(1)/((2xx(17)/(6)))log|(t-(17)/(6))/(t+(17)/(6))|+C[becauseint(dx)/((x^(2)-a^(2)))=(1)/(2a)log|(x-a)/(x+a)|]`
`=(1)/(17)log|(6t-17)/(6t+17)|+C`
`=(1)/(17)log|(6(x+(13)/(6))-17)/(6(x+(13)/(6))+17)|=(1)/(17)log|(6x-4)/(6x+30)|+C`
`=(1)/(17){log(1)/(3)+log|(3x-2)/(x+5)|}+C`
`=(1)/(17)log|(3x-2)/(x+5)|+k "where" (1)/(17)log(1)/(3)+C=k=` constant.


Discussion

No Comment Found