InterviewSolution
Saved Bookmarks
| 1. |
`intlog (1+x^(2))dx.` |
|
Answer» Integrating by parts, taking log `(1+x^(2))` as the first function and 1 as the second function, we get `intlog(1+x^(2))dx=int{log(1+x^(2))*1}dx` `=log(1+x^(2))*intdx-int[(d)/(dx){log(1+x^(2))}*int1dx]dx` `=log(1+x^(2))*x-int(2x)/((1+x^(2)))*xdx` `=xlog(1+x^(2))-2int(x^(2))/((1+x^(2)))dx` `=log(1+x^(2))-2int(1-(1)/(1+x^(2)))dx` `=xlog(1+x^(2))-2intdx+2int(dx)/((1+x^(2)))` `=xlog(1+x^(2))-2x+2tan^(-1)x+C`. |
|