InterviewSolution
Saved Bookmarks
| 1. |
Let `a_(1),a_(2),.......,a_(n)` be fixed real numbers and define a function `f(x)=(x-a_(1))(x-a_(2)) ......(x-a_(n))`, what is lim `f(x)`? For some `anea_(1),a_(2),.........a_(n)`, compute `lim_(Xrarr1) ` f(x) |
|
Answer» `underset(xrarra_(1))"lim"f(x)= underset(xrarra_(1))"lim"[(x-a_(1)]` `(X-a_(2))........(x-a_(n))` `=(a_(1)-a_(1))(a_(1)-a_(2))......(a_(1)-a_(n ))=0` If `anea_(1),a_(2),a_(3).........a_(n)` then `underset(Xrarra)"lim"f(x)=underset(Xrarra)"lim"[x-a_(1)(x-a_(2))........(x-a_(n))]` `=(a-a_(1))(a-a_(2))......(a-a_(n))` |
|