1.

Let `a >1`be a real number. Then the number of roots equation `a^(2(log)_2x)=15+4x^((log)_2a)`is2 (b) infinite (c)0 (d) 1

Answer» `a^(2log_2^x)=15+4x^(log_2^a)`
`a>1`
`(a^(log_2^x))^2=15+4x^(log_2^a)`
`(x^(log_2^a))^2=15+4x^(log_2^a)`
`x>0`
Let `x^(log_2^a)=t`
`log_2^a` is positive
`t^2=15+4t`
`t^2-4t-15=0`
`t=(4pmsqrt(16+60))/2=(4pmsqrt(76))/2`
`t=2+sqrt19`
`t=2-sqrt19` this is not possible
Number of solution=1.


Discussion

No Comment Found