1.

If `y^2=xz` and a^x=b^y=c^z`then prove that `log_b (a)= log_c (b)

Answer» `a^(x) = b^(y) = c^(z)`
` rArr x log a = y log b = z log c`
` :. y/x = z/y rArr(log a)/(log b) = (log b)/(log c)`
` rArr log_(b) a = log_(c) b`


Discussion

No Comment Found