InterviewSolution
Saved Bookmarks
| 1. |
Let a, b, c, d be positive integers such that ` log_(a) b = 3//2 and log_(c) d = 5//4`. If (a-c) = 9, then find the value of (b-d). |
|
Answer» `b = a^(3//2) and d=c^(5//4)` Let ` a= x^(2) and c=y^(4), x, y in N` ` rArr b= x^(3), d= y^(5)` Given ` a-c=9, " then "x^(2)-y^(4) = 9` ` rArr (x- y^(2))(x+y^(2)) = 9` . Hence, ` x- y^(2) = 1 and x + y^(2) =9`. (No other combination in the set of positive integers will be possible.) ` x= 5 and y = 2` `:. b - d = x^(3) - y^(5) = 125 - 32 = 93` |
|