InterviewSolution
Saved Bookmarks
| 1. |
Let `A=sinx+cosx`,Then find the value of `sin^4c+cos^4c`in terms of A. |
|
Answer» `A=sinx+cosx` `:. A^2=1+2sinxcosx` Now, `sin^4+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x` `=1-2sin^2cos^2x` `=1-2((A^2-1)/2)^2` `=1-((A^2-1)^2)/2` `=(2-(A^4-2A^2+1))/2` `=(1+2A^2-A^4)/2` `=1/2+A^2-1/2A^4` |
|