InterviewSolution
Saved Bookmarks
| 1. |
Let `alphaa n dbeta`be any two positive values of `x`for which `2cosx ,|cosx|,`and `1-3cos^2x`are in G.P. The minimum value of `|alpha-beta|`is`pi/3`(b) `pi/4`(c) `pi/2`(d) none of these |
|
Answer» As `2cosx, |cosx| and 1-3cos^2x` are in G.P. `:. |cosx|^2 = 2cosx(1-3cos^2x)` `=>cos^2x = 2cosx-6cos^3x` `=>6cos^3x+cos^2x-2cosx = 0` `=>cosx(6cos^2x+cosx-2) = 0` `=>cosx(6cos^2x+4cosx-3cosx-2) = 0` `=>cosx(2cosx-1)(3cosx+2) = 0` `=>cosx = 0 or 2cosx-1 = 0 or 3cosx+2 = 0` `=> cosx = 0 or cos x = 1/2 or cosx = -2/3` `=> x = pi/2 or x = pi/3 or x = cos^-1(2/3)` But, as `alpha and beta` are positive, so we will take inly positive values. `:. alpha = pi/2 and beta = pi/3` `|alpha-beta| = pi/2-pi/3 = pi/6.` So, option `d` is the correct option. |
|